Skip to main content

BLIP: Bootstrapping Language-Image Pretraining for Unified Vision-Language Understanding

BLIP is a new vision-language model proposed by Microsoft Research Asia in 2022. It introduces a bootstrapping method to learn from noisy image-text pairs scraped from the web.

The BLIP Framework

BLIP consists of three key components:

  • MED - A multimodal encoder-decoder model that can encode images, text, and generate image-grounded text.
  • Captioner - Fine-tuned on COCO to generate captions for web images.
  • Filter - Fine-tuned on COCO to filter noisy image-text pairs.


The pretraining process follows these steps:
  1. Collect noisy image-text pairs from the web.
  2. Pretrain MED on this data.
  3. Finetune captioner and filter on the COCO dataset.
  4. Use captioner to generate new captions for web images.
  5. Filter noisy pairs using the filter model.
  6. Repeat the process by pretraining on a cleaned dataset.

This bootstrapping allows BLIP to learn from web-scale noisy data in a self-supervised manner.


Innovations in BLIP

Some interesting aspects of BLIP:

  • Combines encoder-decoder capability in one unified model (MED). Can encode, decode, and match images and text.
  • Careful pretraining objectives - image-text contrastive loss, matching loss, conditional language modeling loss.
  • Bootstraping loop to denoise image-text data.
  • Better performance than CLIP and ALIGN on vision-language tasks.

Results

BLIP achieves strong performance on vision-language benchmarks like text-image retrieval, visual question answering, etc. Some examples:

  • 83.5% accuracy on NLVR2 compared to 69.9% for CLIP.
  • 91.5% accuracy on Flickr30K image-text retrieval compared to 89.0% for ALIGN.
  • State-of-the-art on 8/14 vision-language tasks.

Limitations and Future Work

  • Bootstrapping can compound errors if the captioner or filter makes mistakes. Need careful fine-tuning.
  • Requires large supervised datasets (COCO) which can be expensive.
  • Can add iterative bootstrapping rounds to progressively improve the model.
  • Explore other modalities like video, audio, etc.

BLIP provides a scalable approach to learning joint vision-language representations from web data. The bootstrapping framework can pave the way for large multimodal models.


Comments

Popular Posts

ES3Net: Accurate and Efficient Edge-based Self-Supervised Stereo Matching Network

Efficient and accurate depth estimation plays an indispensable role in many real-world applications, such as autonomous vehicles, 3D reconstruction, and drone navigation. Despite the precision of stereo matching, its computational intensity can pose significant challenges for edge deployment. Moreover, the struggle of acquiring ground-truth depths for training stereo-matching networks further amplifies these challenges. Enter ES3Net, the Edge-based Self-Supervised Stereo matching Network, a solution designed to mitigate these obstacles. The Challenges of Depth Estimation When it comes to applications like autonomous driving or drone navigation, the importance of accurate depth estimation is hard to overstate. It provides a foundational understanding of the 3D world, allowing for intelligent decision-making and navigation. Traditionally, stereo matching has provided greater accuracy than monocular depth estimation due to the availability of a reference image. However, it also bri...

A non-local algorithm for image denoising

Published in   2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, this paper introduces two main ideas Method noise Non-local (NL) means algorithm to denoise images Method noise It is defined as the difference between the original (noisy) image and its denoised version. Some of the intuitions that can be drawn by analysing method noise are Zero method noise means perfect denoising (complete removal of noise without lose of image data). If a denoising method performed well, the method noise must look like a noise and should contain as little structure as possible from the original image The authors then discuss the method noise properties for different denoising filters. They are derived based on the filter properties. We will not be going in detail for each filter as the properties of the filters are known facts. The paper explains those properties using the intuitions of method noise. NL-means idea Denoised value at...