Skip to main content

Posts

Showing posts from July, 2023

ES3Net: Accurate and Efficient Edge-based Self-Supervised Stereo Matching Network

Efficient and accurate depth estimation plays an indispensable role in many real-world applications, such as autonomous vehicles, 3D reconstruction, and drone navigation. Despite the precision of stereo matching, its computational intensity can pose significant challenges for edge deployment. Moreover, the struggle of acquiring ground-truth depths for training stereo-matching networks further amplifies these challenges. Enter ES3Net, the Edge-based Self-Supervised Stereo matching Network, a solution designed to mitigate these obstacles. The Challenges of Depth Estimation When it comes to applications like autonomous driving or drone navigation, the importance of accurate depth estimation is hard to overstate. It provides a foundational understanding of the 3D world, allowing for intelligent decision-making and navigation. Traditionally, stereo matching has provided greater accuracy than monocular depth estimation due to the availability of a reference image. However, it also bri

4D Panoptic LiDAR Segmentation (4D-PLS)

Introduction In the realm of computer vision, LiDAR segmentation remains a challenging area. Often, we have to rely on the downscaling of scans, followed by individual detections and temporal associations. The recently published paper, "4D Panoptic LiDAR Segmentation (4D-PLS)", seeks to address these challenges with an innovative approach and techniques, offering a fresh perspective on LiDAR segmentation. LiDAR Segmentation: Challenges and Opportunities LiDAR segmentation, specifically sequence segmentation, is a task with substantial hurdles. Due to memory constraints, scans must be downscaled, even for a single scan. This results in detection being performed on individual scans, and then followed by temporal association. It's a piecemeal approach that lacks efficiency and accuracy.  A New Take: The 4D-PLS Framework This is where the 4D-PLS approach comes into play. Drawing inspiration from space-time, the authors developed a system to overlap 4D volumes, assigning seman

Ocean: Object-aware Anchor-free Tracking

The paper titled " Ocean: Object Aware Anchor Free Tracking " presents a novel approach to visual object tracking that is poised to outperform existing anchor-based approaches. The authors propose a unique anchor-free framework named Ocean, designed to address certain challenges in the current field of visual tracking. Introduction Visual object tracking is a crucial part of computer vision technology. The widely utilized anchor-based trackers have their limitations, which this paper attempts to address. The authors present the innovative Ocean framework, designed to transform the visual tracking field by improving adaptability and performance. The Problem with Anchor-Based Trackers Despite their wide usage, anchor-based trackers suffer from some notable drawbacks. They struggle with tracking objects experiencing drastic scale changes or those having high aspect ratios. The anchors, with their fixed scale and fixed ratios, can limit the flexibility of the trackers, making the